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Abstract
We study the right and left commutation semigroups of finite metacyclic groups 
with trivial centre. These are presented 

with (m, k − 1) = 1 and n = indm(k), the smallest positive integer for which 
kn = 1 (mod m), with the conjugate of a by b written ab = b−1ab. The right and left 
commutation semigroups of G,  denoted P(G) and Λ(G), are the semigroups of map-
pings generated by �(g) ∶ G → G and �(g) ∶ G → G defined by (x)�(g) = [x, g] and 
(x)�(g) = [g, x], where the commutator of g and h is defined as [g, h] = g−1h−1gh. 
This paper builds on a previous study of commutation semigroups of dihedral 
groups conducted by the authors with C. Levy. Here we show that a similar approach 
can be applied to G,  a metacyclic group with trivial centre. We give a construction 
of P(G) and Λ(G) as unions of containers, an idea presented in the previous paper 
on dihedral groups. In the case that ⟨a⟩ is cyclic of order p or p2 or its index is 
prime, we show that both P(G) and Λ(G) are disjoint unions of maximal contain-
ers. In these cases, we give an explicit representation of the elements of each com-
mutation semigroup as well as formulas for their exact orders. Finally, we extend 
a result of J. Countryman to show that, for G(m, n, k) with m prime, the condition 
|P(G)| = |Λ(G)| is equivalent to P(G) = Λ(G).
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G(m, n, k) =
⟨
a, b;am = 1, bn = 1, ab = ak

⟩
(m, n, k ∈ ℤ
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1 Introduction

N.D. Gupta introduced the commutation semigroups of a group in [4]. Given a group 
G,  the right and left commutation maps associated with an element g ∈ G are the maps 
�(g), �(g) ∶ G → G defined by

where the commutator of x and y is [x, y] = x−1y−1xy. Letting M(G) denote the sem-
igroup, under composition, of all maps from G to G,   we define the right and left 
commutation semigroups, denoted P(G) and Λ(G), as the subsemigroups of M(G) 
generated by the sets P1(G) = {�(g) ∶ g ∈ G} and Λ1(G) = {�(g) ∶ g ∈ G}. Note 
that if G is abelian, both commutation semigroups are trivial; thus for the remainder 
of this paper we will consider only the case where G is non-abelian.

It is interesting to note that when G = S3, the symmetric group on three letters, 
|P(G)| = 6 and |Λ(G)| = 9. One might have thought these two semigroups would be 
equal, or at least isomorphic. Thus the problem, originally asked by B.H. Neumann 
(oral communication to N.D. Gupta), was: for which groups are the left and right 
commutation semigroups (i) equal, (ii) isomorphic, or (iii) of equal order?

Gupta [4] solved the isomorphism problem for dihedral groups and showed 
that, for G nilpotent of class 2, 3, or 4, one has P(G) = Λ(G), P(G) ≅ Λ(G), and 
|P(G)| = |Λ(G)|, respectively. He also gave an example of a group nilpotent of class 
5 for which the commutation semigroups are not isomorphic. In this context, since 
S3 is not nilpotent, it is not surprising that its commutation semigroups are different.

Extending the work of Gupta [4], Countryman [1] studied the commutation semi-
groups of non-abelian pq-groups: pq-groups are extensions of a cycle of order p by 
a cycle of order q with both p and q prime. Since dihedral groups and pq-groups are 
metacyclic groups, the authors felt that the techniques of [2, 3], and [4] might extend 
to all metacyclic groups. We have chosen to restrict our discussion to metacyclic 
groups with trivial centre, where a number of fairly general results may be obtained. 
We will say more later about the decision to make this restriction. We continue, in 
the spirit of [2] and [3], to view the commutation semigroups in terms of containers. 
In [3], we were able to give formulas for the orders of the commutation semigroups 
of finite dihedral groups. For metacyclic groups, even those with trivial centre, we 
find that the situation is complex enough that such formulas are not likely obtain-
able. We will give examples illustrating how, even with trivial centre, the number-
theoretic complexity of the parameter m makes the analysis more difficult. Despite 
this, we maintain that the method of containers is a powerful tool with which to 
study commutation semigroups of metacyclic groups in general.

In Sect. 2, we will show that the finite metacyclic groups with trivial centre have 
presentations

where m,  n,  and k are positive integers, (m, k − 1) = 1, and n = indm(k), the smallest 
positive integer for which kn = 1 (mod m), where the conjugate of a by b is written 
ab = b−1ab. Each group G(m, n, k) has ⟨a⟩ as a (cyclic) normal subgroup of order m 

(x)�(g) = [x, g] and (x)�(g) = [g, x],

G(m, n, k) =
⟨
a, b;am = 1, bn = 1, ab = ak

⟩
,
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and of index n. For different parameters, these presentations do not insure that the 
groups presented are non-isomorphic, but they do give exactly the finite metacy-
clic groups with trivial centre which we are studying. Thus these presentations are 
adequate for our purposes. It should be noted that, in [5], C.E. Hempel has classified 
the finite metacyclic groups up to isomorphism. G(m, 2,m − 1) is the dihedral group 
of order 2m and has trivial centre exactly when m is odd. Also, every pq-group can 
be presented as G(p, q, k). Thus our results will apply to [1] on pq-groups as well as 
to [2, 3], and [6] on dihedral groups.

In [6], C. Levy obtained formulas for the orders of both left and right commu-
tation semigroups for the dihedral groups G(m, 2,m − 1) with m odd. In [2], D. 
DeWolf gave formulas for G(m, 2,m − 1) with m even, and in [3], formulas were 
produced which covered both cases. For G(m, 2,m − 1) with m odd the container 
structure is less complex than when m is even. This is a consequence of the fact that 
when m is odd, the dihedral group G(m, 2,m − 1) has trivial centre. As our work 
with metacyclic groups proceeded, we saw that the assumption of trivial centre 
was a reasonable hypothesis to control some of the complexity. Thus, from Sect. 3 
onward, we will assume our groups have trivial centre and can therefore be pre-
sented by some G(m, n, k) as above. This hypothesis is equivalent to requiring that 
k − 1 be coprime to m,   as is shown in Sect. 2, and will force the value of m to be 
odd. Note, however, that G(9, 3, 4) has odd m but also has trivial centre. Analogues 
of many of our results hold for metacyclic groups with centre, but we will leave 
them to a future study.

In Sect. 3, we introduce mu-maps and establish the fundamental information we 
will need about containers.

In Sect. 4, we move to a more general setting which will include both the left and 
the right commutation semigroups as particular cases of a more general construc-
tion. If G has trivial centre, then, based on any set S ⊆ ℤm which contains both zero 
and an invertible element, we will construct a semigroup ΣG(S), called the G-semi-
group based on S. Under certain hypotheses, this will be complete, thereby allowing 
us to give a full characterization of the mappings in ΣG(S) as well as a formula for its 
exact order. Applying this result to P(G) and Λ(G) will give us an explicit represen-
tation of the mappings they contain as well as formulas for their orders. This general 
approach may be of independent interest since it provides a construction of many 
different semigroups of mappings from G to G.

In Sect. 5, we will discuss non-basic orbits, the one difficulty that arises in the 
trivial centre case. For P(G) and Λ(G), it appears that this difficulty is fairly rare. 
We will show in Sect.  6 that all orbits of G(m,  n,  k) are basic when m is prime 
or the square of a prime or when n is prime. A computer search has determined 
that, for P(G) and Λ(G) with G = G(m, n, k), the first non-basic orbits appear when 
m = 63 = 32 ⋅ 7. Further searching gives the next problematic values of m as 
75 = 3 ⋅ 52, 81 = 34, 99 = 32 ⋅ 11, 117 = 32 ⋅ 13, and 125 = 53. We conjecture that 
there are infinitely many of these cases. The appearance of non-basic orbits appears 
to be correlated with the complexity of the factorization of m into primes. Thus, 
in place of formulas, we will give a procedure which deals with non-basic orbits 
and an example illustrating this procedure in action. In principle, our methods will 
determine the commutation semigroups of any metacyclic group with trivial centre, 
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but our method is not uniform, depending very much on the number theory of each 
individual group.

In Sect. 6, we will give several applications of the general theory applied to P(G) 
and Λ(G). We will show that for G(m, n, k) with trivial centre, if m is prime or the 
square of a prime, or if n is prime, then P(G) and Λ(G) are complete and can, there-
fore, be expressed as unions of maximal containers. Finally, we will re-state and 
extend the principle result of [1] showing that, for G(m, n, k),   if n is prime, then 
P(G) and Λ(G) are complete.

2  Presenting finite metacyclic groups with trivial centre1

In Lemma 2.1 of [5], C.E. Hempel gives a presentation, which originated with 
Hölder, for finite metacyclic groups:

where k, l,m, n ∈ ℤ
+ with kn = 1 (mod m) and l(k − 1) = 0 (mod m). These have 

⟨a⟩ as a (cyclic) normal subgroup of order m and index n.
Using Hempel’s presentation provides at least two tangible benefits: 

1. Hempel’s presentation is a natural extension of dihedral groups to metacyclic 
groups and thus provides a more intuitive progression from our previous paper 
on this topic.

2. The parameterization that Hempel’s presentation provides has allowed a straight 
forward encoding of these groups as a data structure in ℤm. Being able to encode 
these easily led to the discovery of the group worked out in detail in Example 5.1, 
for example.

Since we will be studying finite metacyclic groups with trivial centre, we will mod-
ify the presentation (∗) to produce a general presentation for all finite metacyclic 
groups with trivial centre. The derivation of the presentation given in Corollary 2.3 
from (∗) is included since it is original and is not found in the literature. However, 
the details of this derivation can be skipped over without affecting understanding of 
the rest of the paper.

We define the index of k relative to m,  denoted indm(k), to be the smallest posi-
tive integer d for which kd = 1 (mod m). Note that this is the order of k in the group 
of invertible elements of ℤm. If x is an element of a group G,   we denote its order 
by ord(x). Recall that the conjugate of a by b is ab = b−1ab, and the commuta-
tor of a and b is [a, b] = a−1b−1ab. The commutator identities 

[
xy, z

]
= [x, z]y

[
y, z

]
 

and 
[
x, yz

]
= [x, z]

[
x, y

]z will be used in this section and the next without further 
comment.

We begin with an elementary observation.

G =
⟨
a, b;am = 1, bn = al, ab = ak

⟩
(∗)

1 The authors express thanks to Prof. L.P. Comerford for his helpful comments on this section.
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Lemma 2.1 For k,m ∈ ℤ
+, if kn = 1 (mod m), then (m, k) = 1.

Proof Suppose (m, k) = g > 1, and z ∈ ℤ
+ with kn = 1 + mz. Then kn = 1 + mz and, 

since g divides kn and m,  g divides 1, a contradiction.   ◻

Lemma 2.2 For k, l,m, n ∈ ℤ
+ with kn = 1 (mod m) and l(k − 1) = 0 (mod m), the 

group

 has trivial centre if and only if (m, k − 1) = 1 and n = indm(k).

Proof Suppose that there exists an s ∈ ℤ
+ with s < m and with s least so that as = 1 

is a consequence of the relations given for G. Since am = 1, it follows that s divides m. 
We could apply Tietze transformations to the presentation to add the relation as = 1 and 
delete am = 1. Note that when we replace m by s,  the congruences, since s divides m,  
still hold. We could then choose to replace the letter s by m throughout. Thus we may say 
ord(a) = m, without loss of generality. It follows that we may assume k, l < m. Note that

Thus 

 (i) ai ∈ Z(G) if and only if i(k − 1) = 0 (mod m).

 (ii) Also since 

 it follows that bj ∈ Z(G) if and only if kj − 1 = 0 (mod m).

 (iii) Letting d = indm(k) we claim that bd ∈ Z(G). To see this, note that 
ab

d

= ak
d

= a, since d is the least positive integer for which kd = 1 (mod m). 
Thus bd commutes with both a and b and is, therefore, central in G.

(⇒) Assuming G has trivial centre, we will first show that (m, k − 1) = 1 by con-
tradiction. Suppose that (m, k − 1) = g (1 < g < m). Then there are positive inte-
gers m′ and t such that m = m�g, k − 1 = tg, with (m�, t) = 1. Since 0 < m′ < m and 
ord(a) = m, we have am′

≠ 1, but

Thus, by (i) above, we have 1 ≠ am
�

∈ Z(G) = {1}, a contradiction. From the rela-
tion bn = al ∈ ⟨a⟩, we have abn = aa

l

= a; thus bn is central in G and, therefore 
by assumption, is trivial. From this we see that al = 1 and, since ord(a) = m, we 
have l = 0 (mod m). Since bn = 1 ∈ ⟨a⟩, we know there are positive powers of b 
in ⟨a⟩. Suppose j is the least positive integer for which bj ∈ ⟨a⟩ and let i be such 
that bj = ai. Note that a = aa

i

= ab
j

= ak
j

; therefore, kj = 1 (mod m), and since bj is 

G =
⟨
a, b;am = 1, bn = al, ab = ak

⟩

[
ai, b

]
= a−i(ai)b = a−i(ai)k = ai(k−1).

[
a, bj

]
= a−1ab

j

= a−1ak
j

= ak
j−1,

m�(k − 1) = m�tg = mt = 0 (mod m).
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central, bj = 1. Also note that, since j was selected minimally, we have j = indm(k). 
Dividing n by j,   we have a positive integer q and a non-negative integer r so that 
n = qj + r (0 ≤ r < j), and hence al = bn = (bj)qbr = br. This contradicts the mini-
mality of j unless r = 0. Therefore n = jq. Thus al = bn = (bj)q = (ai)q, which shows 
that bj = ai implies bn = al. Since bj = ai holds in G,  it is a consequence of the rela-
tions of G;   thus, by Tietze transformations, we can add bj = ai to the relations of 
G,  and remove its consequence al = bn. As for the congruences on the parameters 
of the presentation, we have already noted that j = indm(k). Thus, as j replaces n 
in the relations when removing bn = al and adding bj = ai, we drop the condition 
kn = 1 (mod m) and add kj = 1 (mod m). Also i replaces l in the deleting of bn = al 
and adding bj = ai. Thus we must see that l(k − 1) = 0 (mod m) can be replaced 
by i(k − 1) = 0 (mod m). This is the case because the relation bj = ai implies that 
bj = 1, since it is central, and therefore ai = 1. This implies that i = 0 (mod m) and 
therefore, i(k − 1) = 0 (mod m). Having applied these transformations, we may as 
well replace the letters i and j by l and n,  respectively.

(⇐) Suppose now that (m, k − 1) = 1 and n = indm(k). Since ⟨a⟩ ⊲ G and 
bn = al ∈ ⟨a⟩, the elements of the quotient group G∕⟨a⟩ are right cosets of ⟨a⟩ , 
whose representatives are powers of b. G is the union of these cosets; therefore, each 
element of G can be written in the form aibj (0 ≤ i < m, 0 ≤ j < n). Suppose then 
that some aibj ∈ G is central. Note that

Thus i(k − 1)kj = 0 (mod m). By Lemma 2.1, we know that k is invertible in ℤm 
and, by hypothesis, the same holds for k − 1; therefore, we can reduce this congru-
ence to i = 0 (mod m). It follows that for any aibj ∈ Z(G), we have aibj = bj ∈ Z(G). 
From (ii) above, bj is central if and only if kj − 1 = 0 (mod m). If j < n, the state-
ment kj − 1 = 0 (mod m) would contradict the minimality of n = indm(k) unless 
j = 0. Thus if aibj is central, it is trivial and, therefore, Z(G) = {1}, as required.   ◻

Corollary 2.3 For m, n, k ∈ ℤ
+, every finite metacyclic group with trivial centre 

can be presented as

where (m, k − 1) = 1 and n = indm(k).

Proof We will begin with the presentation (∗), G =
⟨
a, b;am = 1, bn = al, ab = ak

⟩
, 

along with the conditions kn = 1 (mod m) and l(k − 1) = 0 (mod m). We know that 
every finite metacyclic group has this presentation for some k, l,m, n ∈ ℤ

+. Lemma 
2.2 says that the additional conditions, (m, k − 1) = 1 and n = indm(k), are necessary 
and sufficient to assure that the presentation gives a finite metacyclic group with 
trivial centre. Note that n = indm(k) implies kn = 1 (mod m); thus the latter can be 

1 =
[
b, aibj

]
=
[
b, bj

][
b, ai

]bj
=
[
b, ai

]bj
=

((
a−i

)b
ai
)bj

=

((
a−i

)k
ai
)kj

= ai(k−1)k
j

.

G(m, n, k) =
⟨
a, b;am = 1, bn = 1, ab = ak

⟩
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removed from the list as redundant. The condition (m, k − 1) = 1 implies that k − 1 
is invertible in ℤm. Multiplying both sides of the congruence l(k − 1) = 0 (mod m) 
by the inverse of k − 1 yields l = 0 (mod m). Therefore the relation l = 0 (mod m) 
replaces l(k − 1) = 0 (mod m). Applying l = 0 (mod m) to the only relation con-
taining an l replaces bn = al with bn = 1. Therefore, for k, l,m, n ∈ ℤ

+ satisfying 
the conditions (m, k − 1) = 1, n = indm(k), and l = 0 (mod m), the presentations ⟨
a, b;am = 1, bn = 1, ab = ak

⟩
 give exactly the finite metacyclic groups with trivial 

centre. Note that since the letter l does not occur in the presentation, we may omit 
the condition l = 0 (mod m) without loss of generality.   ◻

It will prove efficient to make the following notational conventions. If S is a subset 
of the multiplicative semigroup ℤm, we denote the invertible elements of S by I(S) 
and the non-invertible elements of S by N(S). Recall that an element of is invertible 
if and only if it is coprime to m. For each t (0 ≤ t ≤ n) we let kt = kt − 1 (mod m). 
Thus k1 = k − 1 (mod m), k0 = 0 (mod m), and, since kn = 1 (mod m), we have 
kn = 0 (mod m).

Lemma 2.4 If G is a finite metacyclic group presented by (∗) (possibly having a 
non-trivial centre) with R = {kj ∈ ℤm ∶ j ∈ ℤn} and L = {−kj ∈ ℤm ∶ j ∈ ℤn} then 

 (i) 0 ∈ R, 0 ∈ L, and
 (ii) if n = indm(k), the following conditions are equivalent: 

(a) the centre of G is trivial,
(b) I(R) ≠ ∅,

(c) I(L) ≠ ∅.

Proof 

 (i) Note that 0 = k0 ∈ R and 0 = −k0 ∈ L.

 (ii) (a ⇒ b) Suppose first that the centre of G is trivial and, hence, by Lemma 2.2, 
we have (m, k1) = 1. It follows that k1(∈ R) is invertible in ℤm.

   (b ⇒ c) If, for some j ∈ ℤn, kj ∈ R is invertible in ℤm, then −kj ∈ L. Denot-
ing the inverse of kj in ℤm as k−1

j
, we see that (−kj)(−k−1j ) = 1; therefore, −kj 

is invertible. Hence I(L) ≠ ∅.

   (c ⇒ a) Now suppose that there is a j ∈ ℤn for which −kj is invertible. Note 
that if j = 0, then −k0 = 0 ∉ I(L). Therefore, we may assume that 0 < j < n. 
If j = 1, we have k1 invertible in ℤm and, hence, coprime to m. Thus, along 
with the hypothesis n = indm(k), Lemma 2.2 implies that G has trivial centre. 
If 1 < j < n, then 

   Since −kj is invertible, so are both factors; therefore, k1 is invertible. It follows, 
by Lemma 2.2, that G has trivial centre.   ◻

−kj = −k1(1 + k +⋯ + kj−1) = k1(−(1 + k +⋯ + kj−1)).
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In Sect. 4, we will use the sets R and L to construct right and left commutation 
semigroups. The previous lemma illustrates how the triviality of the centre of G 
splits the number theory associated with the commutation semigroups into two dis-
tinct cases: R and L will each contain 0,   a non-invertible element, but they will 
contain an invertible element exactly when the centre of G is trivial. The existence 
of invertible elements in R (and hence in L) will allow us to proceed with the argu-
ments given below (see the definitions of G-semigroup and orbit). We will not give 
a complete description of the commutation semigroups in the case that the centre of 
G is trivial, but we will be able to obtain some useful and rather general results with 
this assumption. We will also show that our method will allow the calculation of 
the elements of the commutation semigroups and their orders provided the reader is 
willing to take on some cumbersome modular arithmetic calculations. A theory for 
metacyclic groups with non-trivial centre could still be approached using containers, 
but it would have to take a different form from what we do below.

From this point onward, G(m, n, k),  abbreviated as G,  will be a finite metacyclic 
group with trivial centre as described in Corollary 2.3.

Remark2 The metacyclic groups with trivial centre that are studied here can be also be 
presented as a certain semidirect product. If G is a such a metacyclic group with ℤm as 
a cyclic normal subgroup, then G∕ℤm is also cylic. Let �ℤm be a generator of G∕ℤm. 
Then � acts on ℤm by conjugation and this action is faithful since G has trivial centre. 
One can then identify � with an element of Aut(ℤm) = ℤ

∗
m
 (the multiplicative group of 

units of ℤm ). Then |G∕ℤm| and |ℤm| are coprime so by Schur–Zassenhaus, G is the sem-
idirect product ⟨�⟩ℤm. This semidirect product is G(m, n, k) where n = |�| and k = �.

3  Commutation mappings, mu‑maps, and containers

We begin to study commutation mappings on G with a general result about 
commutators.

Lemma 3.1 If G = G(m, n, k), i, r ∈ ℤm and j, s ∈ ℤn, then 
[
aibj, arbs

]
= aN where 

N = ikjks − rkskj (mod m).

Proof

 

  ◻

[
aibj, arbs

]
=
[
ai, arbs

]bj[
bj, arbs

]
=
[
ai, bs

]bj[
bj, ar

]bs

=

(
a−i(ai)

bs
)bj(

b−ja−rbjar
)bs

=

(
a−i(ai)

ks
)kj(

a−rb
j

ar
)ks

=
(
ai(k

s−1)
)kj(

ar(1−k
j)
)ks

= ai(k
s−1)kj+r(1−kj)ks = aik

jks+rk
skj .

2 The authors thank an anonymous colleague for having suggested this presentation.
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The following concept was introduced by N.D. Gupta in [4].

Definition 3.2 For G = G(m, n, k), and (x, y) ∈ ℤm × ℤm, a mu-map is a mapping 
�(x, y) ∶ G → G defined by 

(
aibj

)
�(x, y) = aN , where N = xikj − ykj (mod m).

Lemma 3.3 For each g ∈ G the mappings �(g) and �(g) are mu-maps. In particular 
if g = arbs, then �(arbs) = �(ks, rk

s) and �(arbs) = �(−ks,−rk
s).

Proof Note that, by Lemma 3.1,

with N = ikjks − rkskj (mod m). By the definition of mu-map, (aibj)�(ks, rks) = aN
� 

with N� = ksik
j − rkskj; thus �(arbs) = �(ks, rk

s). Similarly

with N = rkskj − ikjks (mod m), while (aibj)�(−ks,−rks) = aN
� with

Therefore �(arbs) = �(−ks,−rk
s).   ◻

The fundamental problem in constructing the commutation semigroups is that, 
when taking products of rho-maps and lambda-maps, their products, in general, 
are not rho-maps and lambda-maps. Identifying the generating maps as mu-maps 
allows us a clearer view of how these products are formed since products of mu-
maps are mu-maps.

Lemma 3.4 If �(x1, y1) and �(x2, y2) are mu-maps, then their composition is a mu-
map with

Proof 

  ◻

In light of this result we make the following definition.

(aibj)�(arbs) =
[
aibj, arbs

]
= aN ,

(aibj)�(arbs) =
[
arbs, aibj

]
= aN ,

N� = −ksik
j − (−rks)kj = −ikjks + rkskj.

�(x1, y1)◦�(x2, y2) = �(x1x2, y1x2).

(aibj)�(x1, y1)◦�(x2, y2) = (ax1ik
j−y1kjb0)�(x2, y2)

= ax2(x1ik
j−y1kj)k

0−y2k0

= ax2(x1ik
j−y1kj)

= ax1x2ik
j−y1x2kj

= (aibj)�(x1x2, y1x2).
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Definition 3.5 The set M(G) = {�(x, y) ∶ x, y ∈ ℤm} of all mu-maps forms a semi-
group under composition of mappings. We will refer to M(G) as the �-semigroup 
associated with G.

To obtain the commutation semigroups P(G) and Λ(G), we will use Lemma 3.3 
to rewrite the generating sets P1(G) and Λ1(G) as mu-maps and form their clo-
sures in M(G) under composition. We can simplify this process further by group-
ing these mappings together into sets called containers.

Definition 3.6 For any pair (x, y) ∈ ℤm × ℤm, the (x, y)-container with respect to G 
is the set ConG(x, y) = {�(x, yz) ∶ z ∈ ℤm}.

When no confusion will arise, we abbreviate ConG(x, y) as Con(x, y). We denote 
the order of the container by |Con(x, y)|. Note that by letting z = 1 in �(x, yz) we 
see that �(x, y) ∈ Con(x, y). Containers may intersect, but only in a limited way.

Lemma 3.7 For G = G(m, n, k) and x1, x2, y1, y2 ∈ ℤm, Con(x1, y1)∩ 
Con(x2, y2) ≠ ∅ if and only if x1 = x2 (mod m).

Proof (⇒) If � ∈ Con(x1, y1) ∩ Con(x2, y2) , then there exist z1, z2 ∈ ℤm 
such that � = �(x1, y1z1) = �(x2, y2z2). Applying both maps to a ∈ G, we 
have (a)�(x1, y1z1) = aN1 with N1 = x1 ⋅ 1 ⋅ k

0 − y1z1k0 = x1 (mod m), while 
(a)�(x2, y2z2) = aN2 with N2 = x2 ⋅ 1 ⋅ k

0 − y2z2k0 = x2 (mod m). It follows that 
x1 = x2 (mod m).

(⇐) Note that �(x1, 0) = �(x1, y1 ⋅ 0) ∈ Con(x1, y1) while �(x2, 0) =

�(x2, y2 ⋅ 0) ∈ Con(x2, y2). But, since x1 = x2 (mod m), we have �(x1, 0) =

�(x2, 0) ∈ Con(x1, y1) ∩ Con(x2, y2). Thus Con(x1, y1) ∩ Con(x2, y2) ≠ ∅.   ◻

We need a preliminary lemma to calculate the orders of containers.

Lemma 3.8 Let G = G(m, n, k) and x, y ∈ ℤm. Then, for all z1, z2 ∈ ℤm, 
�(x, yz1) = �(x, yz2) if and only if z1 = z2 (mod m�), where m� =

m

(m,y)
.

Proof Letting (m, y) = g, with m = m�g and y = y�g, it follows that (m�, y�) = 1. 
Notice that m

(m,y)
=

m�g

g
= m�.

(⇒) Supposing that �(x, yz1) = �(x, yz2), we will apply both mappings to b ∈ G. 
This gives (b)�(x, yz1) = aN1 with N1 = x ⋅ 0 ⋅ k1 − yz1k1 and (b)�(x, yz2) = aN2 with 
N2 = x ⋅ 0 ⋅ k1 − yz2k1. It follows that yz1k1 = yz2k1 (mod m). One of the conditions 
on the presentation of G is that (m, k1) = 1; therefore k1 is invertible in ℤm and, mul-
tiplying both sides of the congruence by k−1

1
, we have yz1 = yz2 (mod m). This can 

be rewritten y�gz1 = y�gz2 (mod m�g). Thus we have y�z1 = y�z2 (mod m�). Since 
(m�, y�) = 1, y′ is invertible in ℤm. Thus we can multiply both sides of the congru-
ence by the inverse of y′ in ℤm to obtain z1 = z2 (mod m�).
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(⇐) Conversely, we will assume that z1 = z2 (mod m�) and show that when the 
mappings �(x, yz1) and �(x, yz2) are applied to any aibj ∈ G the images are equal. 
We begin with (aibj)�(x, yz1) = aN1 and (aibj)�(x, yz2) = aN2 with N1 = xikj − yz1kj 
and N2 = xikj − yz2kj. Therefore, N2 − N1 = y(z1 − z2)kj (mod m). Our hypoth-
esis is equivalent to z1 − z2 = 0 (mod m�). Multiplying both sides of the con-
gruence by y′kj yields y�(z1 − z2)kj = 0 (mod m�). This can then can be trans-
formed to y�g(z1 − z2)kj = g ⋅ 0 (mod m�g), or y(z1 − z2)kj = 0 (mod m). Thus 
N2 − N1 = 0 (mod m) and our conclusion follows.   ◻

Corollary 3.9 If G = G(m, n, k) and x ∈ ℤm then, for all y1, y2 ∈ ℤm, 
�(x, y1) = �(x, y2) if and only if y1 = y2 (mod m).

Proof In Lemma 3.8, replace y by 1,   z1 by y1, and z2 by y2. Note that 
(m, y) = (m, 1) = 1; thus m� = m.   ◻

Corollary 3.10 If G = G(m, n, k) and x, y ∈ ℤm, then |Con(x, y)| = m

(m,y)
.

Proof From Lemma 3.8, there are exactly m

(m,y)
 distinct mappings in the container 

Con(x, y).   ◻

We will use the following lemmas in several of our examples.

Lemma 3.11 If G = G(m, n, k), for each x, y ∈ ℤm,

 (i) Con(x, yz) ⊆ Con(x, y),

 (ii) Con(x, y) ⊆ Con(x, 1),

 (iii) if u ∈ I(ℤm),then Con(x, y) = Con(x, yu), and
 (iv) Con(x, y) = Con(x, 1) if and only if y ∈ I(ℤm).

Proof 

 (i) Let �(x, (yz)w) be an arbitrary element of Con(x, yz) for some w ∈ ℤm. Since 
wz ∈ ℤm, we have �(x, y(zw)) ∈ Con(x, y) and our result follows.

 (ii) In part (i), let y = 1 and change z to y.
 (iii) (⊆) Let �(x, y) (z ∈ ℤm) be an arbitrary element of Con(x, y). Since zu−1 ∈ ℤm, 

it follows that �(x, yu(zu−1)) ∈ Con(x, yu). But �(x, yu(zu−1)) = �(x, yz). Thus 
we have shown that �(x, yz) ∈ Con(x, yu).

   (⊇) This is immediate from part (i).
 (iv) (⇒) Since �(x, 1) ∈ Con(x, 1) = Con(x, y), there is a z ∈ ℤm so that 

�(x, yz) = �(x, 1). By Corollary 3.9, we have yz = 1 (mod m), from which it 
follows that y ∈ U(ℤm).

   (⇐) This follows directly from part (iii) by letting y = 1.

   ◻
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Lemma 3.12 If G = G(m, n, k) and x, y1, y2 ∈ ℤm, then Con(x, y1) ⊆ Con(x, y2) if 
and only if there exists z ∈ ℤm such that y1 = y2z (mod m).

Proof (⇒) We have 𝜇(x, y1) ∈ Con(x, y1) ⊆ Con(x, y2); therefore, there exists 
z ∈ ℤm such that �(x, y1) = �(x, y2z). Applying these mappings to b,   we obtain 
(b)�(x, y1) = aN1 where N1 = −y1k1 (mod m) and (b)�(x, y2z) = aN2 where 
N2 = −y1zk1 (mod m). Thus y1k1 = y2zk1 (mod m) and, since k1 is invertible, we 
have y1 = y2z (mod m).

(⇐) The fact that Con(x, y1) = Con(x, y2z) ⊆ Con(x, y2) follows immediately from 
Lemma 3.11(i).   ◻

4  A generalized approach

Consider the multiplicative semigroup ℤm. Recall that if ∅ ≠ S ⊆ ℤm, S∗ denotes the 
subsemigroup of Zm generated by S,   and the invertibles I(S∗) form a subgroup of 
ℤm. It follows that 1 ∈ I(S∗) and, since I(S∗) is a finite group, for each x ∈ I(S∗), 
there is a least non-negative integer u for which xu = 1. Thus x−1 = xu−1 ∈ I(S∗).

Definition 4.1 A non-empty subset S of ℤm is a base if 0 ∈ S and I(S) is non-empty.

Definition 4.2 For G = G(m, n, k) and S a base, the G-semigroup 
based on S, denoted ΣG(S), is the subsemigroup of M(G) generated by 
Γ�(S) = {�(s, z) ∶ s ∈ S, z ∈ ℤm}. We call the set Γ�(S) the set of �-generators asso-
ciated with S and the set Π�(S) = {�(ss∗, s∗z) ∶ s ∈ S, s∗ ∈ S∗, z ∈ ℤm} the set of �
-products associated with S.

Lemma 4.3 For G = G(m, n, k) and S a base, ΣG(S) = Γ�(S) ∪ Π�(S).

Proof We first show that Π�(S) is the set of products of two or more �-generators. 
Suppose we form the product of two or more generators �(s1, z1)�(s2, z2)⋯�(st, zt). 
By repeated use of Lemma 3.4, the product can be written �(s1s2 ⋯ st, z1s2 ⋯ st). 
Note then that s1 could be any element of S and s2 ⋯ st represents an arbitrary ele-
ment of S∗; therefore, each �(ss∗, zs∗) ∈ Π�(S) is such a product and each product is 
an element of Π�(S). Since we have included the generating set Γ�(S) and all prod-
ucts of generators, it is clear that ΣG(S) = Γ�(S) ∪ Π�(S).   ◻

By proper selection of S,   we will be able to produce both the left and right 
commutation semigroups as particular instances of ΣG(S). The theorems we want 
to exhibit for P(G) and Λ(G) will follow immediately from the same results for 
ΣG(S). In addition to representing the commutation semigroups, the construction 
of ΣG(S) produces a subsemigroup of M(G) for each choice of a base S and there-
fore may be worthy of further study on its own.

First we will establish that the commutation semigroups are, indeed, instances 
of ΣG(S).
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Lemma 4.4 If G = G(m, n, k), R = {kj (mod m) ∶ j ∈ ℤn}, and L = {−kj (mod m) ∶ j ∈ ℤn} 
then R and L are bases with P(G) = ΣG(R) and Λ(G) = ΣG(L).

Proof Before we can form ΣG(S), we must confirm that S is a base; in particular, we 
must show that R and L are bases. By Lemma 2.4, we have zero in both N(R) and 
N(L),  and since G has trivial centre, I(R) and I(L) are non-empty. Therefore R and 
L are bases. We will prove P(G) = ΣG(R) and note that a similar argument can be 
given to prove Λ(G) = ΣG(L). By Lemma 3.3, we have �(arbs) = �(ks, rk

s) for each 
r ∈ ℤm, s ∈ ℤn. Since ks ∈ R and rks ∈ ℤm, �(ks, rks) ∈ Γ�(R). Since k,   and thus 
ks, is invertible in ℤm, it follows that {rks ∶ r ∈ ℤm} = ℤm. Every element of Γ�(R) 
occurs in the form �(ks, rks); therefore, {�(aibj) ∶ i ∈ ℤm, j ∈ ℤn} = Γ�(R). Since 
P(G) and ΣG(R) are generated by the same mappings, they are equal.   ◻

Lemma 4.5 Suppose G = G(m, n, k) and S is a base. For each  x, y ∈ ℤm, 
�(x, y) ∈ ΣG(S) if and only if Con(x, y) ⊆ ΣG(S).

Proof (⇒) Given any z ∈ ℤm we wish to show that if �(x, y) ∈ ΣG(S), then 
�(x, yz) ∈ ΣG(S). Suppose that �(x, y) ∈ Γ�(S); then x ∈ S and y ∈ ℤm. Thus 
yz ∈ ℤm and clearly 𝜇(x, zy) ∈ Γ𝜇(S) ⊆ ΣG(S). If �(x, y) ∈ Π�(S), then we know 
there are s ∈ S, s∗ ∈ S∗, and z� ∈ ℤm so that x = ss∗ (mod m) and y = s∗z� (mod m). 
Therefore, yz = s∗z�z (mod m). Thus 𝜇(x, yz) = 𝜇(ss∗, s∗z�z) ∈ Π𝜇(S) ⊆ ΣG(S). In 
each case, �(x, yz) ∈ ΣG(S).

(⇐) We know that �(x, y) ∈ Con(x, y). Thus, assuming Con(x, y) ⊆ ΣG(S), it is 
immediate that �(x, y) ∈ ΣG(S).   ◻

The following lemma shows that each x in S∗ produces at least one container in 
ΣG(S).

Lemma 4.6 If G = G(m, n, k) and S is a base, then for each  x ∈ S∗, there exists 
y ∈ S∗ so that Con(x, y) ⊆ ΣG(S).

Proof If x ∈ S∗, then x ∈ S or x is a product of elements of S. If x ∈ S then, select-
ing y = 1, we obtain 𝜇(x, 1) ∈ Γ𝜇(G) ⊆ ΣG(S). Therefore, by Lemma 4.5, we have 
Con(x, 1) ⊆ ΣG(S), as required. If x = s1s2 ⋯ st (si ∈ S, t > 1), let x� = s2 ⋯ st. Since 
x� ∈ S∗, we see that 𝜇(s1x�, x�) ∈ Π𝜇(S) ⊆ ΣG(S). Since x = s1x

�, if we select y = x�, 
Lemma 4.5 implies that Con(x, y) ⊆ ΣG(S).   ◻

We now introduce a set Y(x) associated with each x in S∗. The following lemma 
characterizes exactly those y-values for which Con(x, y) ⊆ ΣG(S).

Lemma 4.7 If G = G(m, n, k), S is a base, x ∈ S∗, and

then y ∈ Y(x) if and only if Con(x, y) ⊆ ΣG(S).

Y(x) = {s∗z ∶ s∗ ∈ S∗, z ∈ ℤm,∃s ∈ S so that x = ss∗ (mod m)},
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Proof It will be convenient to suppress mention of the modulus m.
(⇒) If y ∈ Y(x) then, there exist s∗ ∈ S∗, z ∈ ℤm, and s ∈ S with x = ss∗ and 

y = s∗z. By Lemma 4.6, we know there exists y� ∈ S∗ such that �(s∗, y�) ∈ ΣG(S). 
Also, we have 𝜇(s, z) ∈ Γ𝜇(S) ⊆ ΣG(S). Therefore, �(s, z)�(s∗, y�) ∈ ΣG(S). Note 
that �(s, z)�(s∗, y�) = �(ss∗, s∗z) = �(x, y). And, since �(x, y) ∈ ΣG(S), Lemma 4.5 
implies that Con(x, y) ⊆ ΣG(S).

(⇐) Suppose now that Con(x, y) ⊆ ΣG(S). By Lemma 4.5, we have 
�(x, y) ∈ ΣG(S). By Lemma 4.3, �(x, y) ∈ Γ�(S) or Π�(S). In the first case, we have 
x ∈ S. Since I(S∗) is a group, we know 1 ∈ I(S∗) ⊆ S∗; therefore, we let s = x, s∗ = 1, 
and z = y to obtain x = ss∗ = x ⋅ 1, with y = s∗z = 1 ⋅ y. Therefore, y ∈ Y(x). In the 
second case, �(x, y) ∈ Π�(S). Thus we have s ∈ S, s∗ ∈ S∗ and z ∈ ℤm, with x = ss∗ 
and y = s∗z. It follows that y ∈ Y(x).   ◻

Note that by Lemma 4.6, given any x ∈ S∗ there is a y ∈ S∗ for which 
Con(x, y) ⊆ ΣG(S); furthermore, Lemma 4.7 determines exactly those values of y 
for which Con(x, y) ⊆ ΣG(S). We will refer to these containers as a family.

Definition 4.8 Suppose G = G(m, n, k) and S is a base. For each x ∈ S∗, the x-fam-
ily of containers (with respect to G and S) is the set FG(x, S) = {Con(x, y) ∶ y ∈ Y(x)}. 
We denote the union of the x-family by ∪FG(x, S) =

⋃
y∈Y(x)

Con(x, y).

Theorem 4.9 If G = G(m, n, k) and S is a base, then

Proof Note that the union is disjoint by Lemma 3.7.
(⊆) If �(x0, y0) ∈ ΣG(S), then, by Lemma 4.5, Con(x0, y0) ⊆ ΣG(S). Thus, by 

Lemma 4.7, y0 ∈ Y(x0). Therefore Con(x0, y0) ∈ FG(x0, S), which implies that 
𝜇(x0, y0) ∈ Con(x0, y0) ⊆ ∪FG(x0, S). Therefore

(⊇) If

it follows, by Lemma 3.7, that

Therefore y0 ∈ Y(x0) and thus, by Lemma 4.7, Con(x0, y0) ⊆ ΣG(S). By Lemma 4.5, 
�(x0, y0) ∈ ΣG(S).   ◻

Theorem 4.9 states that ΣG(S) is the disjoint union of all the x-families. Since dis-
tinct families are disjoint, the complexity involved in representing ΣG(S) as a union 

ΣG(S) =
⋃̇

x∈S∗

(
∪FG(x, S)

)
.

𝜇(x0, y0) ∈
⋃̇

x∈S∗

(
∪FG(x, S)

)
.

𝜇(x0, y0) ∈
⋃̇

x∈S∗

(
∪FG(x, S)

)
,

�(x0, y0) ∈ ∪FG(x0, S) =
⋃

y∈Y(x0)

Con(x0, y).
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of containers occurs entirely within each x-family. In this section, we will determine 
conditions that assure a minimal amount of complexity, so that this union is easily 
determined. In Sect. 5, we will study the more involved situation.

Definition 4.10 If G = G(m, n, k) and S is a base, for each x ∈ S∗, we say the 
x-family F(x, S) is complete if Con(x, 1) ∈ F(x, S). The G-semigroup ΣG(S) is com-
plete if each x-family is complete.

Not all x-families are complete. In Sect.  5, Example 5.1 will show, for 
G = G(63, 6, 2), that F(21, {0, 1, 3, 7, 15, 31}) is not complete.

Lemma 4.11 For x ∈ S∗, if F(x, S) is complete, then ∪F(x, S) = Con(x, 1).

Proof (⊆) By Lemma 3.11(ii), we have Con(x, y) ⊆ Con(x, 1) for each y ∈ ℤm. 
Therefore,

(⊇) Since F(x, S) is complete, we know that Con(x, 1) ∈ F(x, S); therefore, 
Con(x, 1) ⊆ ∪F(x, S).   ◻

Theorem  4.12 If G = G(m, n, k), S is a base, and  ΣG(S) is complete, then 
ΣG(S) =

⋃̇
x∈S∗

Con(x, 1) and ||ΣG(S)
|| = m|S∗|.

Proof By Theorem 4.9,

Since each x-family is complete, Lemma 4.11 implies that

By Corollary 3.10, |Con(x, 1)| = m

(m,1)
= m. Therefore ||ΣG(S)

|| = m|S∗|.   ◻

Thus, if ΣG(S) is complete, we have the simplest situation. ΣG(S) is a disjoint 
union of maximal containers and its order is easily calculated. At this point we turn 
our attention to incomplete x-families.

Definition 4.13 If G = G(m, n, k), S is a base, and x ∈ S∗, then the orbit of x in S∗ is 
the set orb(x, S∗) = {xy ∶ y ∈ I(S∗)}.

Since S is a base, there are invertibles in S∗. As noted earlier, I(S∗) forms a group, 
thus 1 ∈ I(S∗) and it follows that x ∈ orb(x, S∗). If G had non-trivial centre, there 
will be no invertibles with which to create an orbit and a different approach will be 
required.

∪FG(x, S) =
⋃

y∈Y(x)

Con(x, y) ⊆ Con(x, 1).

ΣG(S) =
⋃̇

x∈S∗

(
∪FG(x, S)

)
.

ΣG(S) =
⋃̇

x∈S∗
Con(x, 1).
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Lemma 4.14 If G = G(m, n, k) and S is a base, then, for each x1, x2 ∈ S∗, either 
orb(x1, S

∗) = orb(x2, S
∗) or orb(x1, S∗) ∩ orb(x2, S

∗) = ∅.

Proof Suppose that orb(x1, S∗) ∩ orb(x2, S
∗) ≠ ∅ and that z ∈ orb(x1, S

∗) ∩ orb(x2, S
∗). 

Thus there are y1, y2 ∈ I(S∗) so that x1y1 = z = x2y2. It follows that x1 = x2y2y
−1
1
. 

An arbitrary element of orb(x1, S
∗) is of the form x1u (u ∈ I(S∗), thus 

x1u = x2(y2y
−1
1
u) ∈ orb(x2, S

∗). It follows that orb(x1, S∗) ⊆ orb(x2, S
∗). The other 

containment is shown similarly and our result follows.   ◻

The fact that S∗ is the union of its orbits together with Lemma 4.14 imply that the 
orbits of S∗ partition it into equivalence classes with respect to the relation defined 
as x ∼ y if and only if there exists a z ∈ I(S∗) for which x = yz. In fact ∼ is a congru-
ence; thus the quotient semigroup S∕ ∼ can be formed. The number of distinct orbits 
in S∗ is the order of the quotient semigroup. We will next show how these orbits are 
involved in the search for the containers within ΣG(S).

Definition 4.15 If G = G(m, n, k), S is a base, and x ∈ S∗, the orbit orb(x, S∗) is 
called basic if orb(x, S∗) ∩ S ≠ ∅.

Theorem  4.16 If G = G(m, n, k), S a base, and x ∈ S∗, then orb(x, S∗) is basic if 
and only if F(x, S) is complete.

Proof (⇒) Since orb(x, S∗) is basic, we know there is an s ∈ S and an invertible 
y ∈ I(S∗) for which xy = s. Thus, representing the inverse of y (mod m) as y−1, we 
have x = sy−1. Since I(S∗) forms a group, y−1 ∈ I(S∗) ⊆ S∗; therefore,

Thus Con(x, y−1) ⊆ ΣG(S), by Lemma 4.5. Since y−1 is invertible, Lemma 3.11(iv) 
implies that Con(x, y−1) = Con(x, 1); therefore, Con(x, 1) ⊆ ΣG(S) and F(x, S) is 
complete.

(⇐) If F(x, S) is complete, then Con(x, 1) ⊆ ΣG(S). Thus �(x, 1) ∈ ΣG(S), by 
Lemma 4.5. If �(x, 1) ∈ Γ�(S), then x ∈ S and, since x ∈ orb(x, S∗) ∩ S, orb(x, S∗) 
is basic. If �(x, 1) ∈ Π�(S), then x = ss∗, 1 = s∗z and, since s∗z = 1, s∗ is invert-
ible. Therefore, x(s∗)−1 ∈ orb(x, S∗), and x(s∗)−1 = ss∗(s∗)−1 = s ∈ S. Thus 
x(s∗)−1 ∈ orb(x, S∗) ∩ S, and it follows that orb(x, S∗) is basic.   ◻

Theorem 4.17 If G = G(m, n, k) and S is a base, then orb(x, S∗) is basic, for each 
x ∈ S∗, if and only if ΣG(S) is complete. In this case we have ΣG(S) =

⋃̇
x∈S∗

Con(x, 1) 
and ||ΣG(S)

|| = m|S∗|.

Proof By Theorem 4.16, each orbit is basic if and only if each x-family F(x, S) is 
complete. This is the case if and only if ΣG(S) is complete. The second sentence fol-
lows by Theorem 4.12.   ◻

𝜇(x, y−1) = 𝜇(sy−1, y−1) ∈ Π𝜇(S) ⊆ ΣG(S).
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Corollary 4.18 If G = G(m, n, k), R = {kj ∶ j ∈ ℤn} and L = {−kj ∶ j ∈ ℤn}, then 

 (i) If, for each x ∈ R∗, orb(x,R)is basic, then ΣG(S) =
⋃̇

x∈R∗
Con(x, 1)and 

|P(G)| = |R∗|m, and
 (ii) If, for each x ∈ L∗, orb(x, L)is basic, then ΣG(S) =

⋃̇
x∈L∗

Con(x, 1)and 
|Λ(G)| = |L∗|m.

Proof By Lemma 4.4, we know that P(G) = ΣG(R) and Λ(G) = ΣG(L). The result 
then follows immediately from Theorem 4.17.   ◻

If the orbit of x is basic, then ∪F(x, S) = Con(x, 1). However if the orbit of x is 
non-basic, the containers in F(x, S) have a more complex interrelationship. We now 
give examples to illustrate that, for G(m, n, k) with trivial centre, it is possible for 
each orbit to be basic in R∗ but not in L∗ and vice versa. Thus the completeness of 
P(G) and Λ(G) are independent.

Example 4.19 We leave the modular arithmetic calculations to the reader. Note that 
G(315, 12, 272) has trivial centre and that orb(x,R∗) is basic for each x ∈ R∗, but 
orb(225, L∗) is not basic. Also G(135,  12,  62) has trivial centre and orb(x, L∗) is 
basic for each x ∈ L∗, but orb(130,R∗) is not basic. In each case there is just one 
orbit which is not basic though, in general, this is not the case. A computer search 
shows that 63 is the smallest value of m for which non-basic orbits exist in metacy-
clic groups with trivial centre for P(G) or Λ(G).

We will apply the following Lemma and Corollary to narrow the search for non-
basic orbits.

Lemma 4.20 If G = G(m, n, k), S is a base, and x ∈ I(S∗), then orb(x, S∗) is basic.

Proof Since x ∈ I(S∗), it is invertible. Let us call the inverse x−1 and note that, by 
Lemma 4.7, x−1 ∈ I(S∗). Since S is a base, we know that there is some y ∈ I(S). 
Then

Thus y ∈ orb(x, S∗) ∩ S and it follows that orb(x, S∗) is basic.   ◻

Corollary 4.21 Let G = G(m, n, k) and let S be a base. If, for each x ∈ N(S∗) − N(S), 
orb(x, S) is basic, then all orbits are basic.

Proof Let x ∈ S∗. It is clear that if x ∈ S, then x ∈ S ∩ orb(x, S), thus orb(x, S) is 
basic. By Lemma 4.20, if x ∈ I(S∗), then orb(x, S∗) is basic. Therefore, if orb(x, S) is 
non-basic, x ∈ N(S∗) and x ∉ S.   ◻

y = 1(y) = (xx−1)y = x(x−1y) ∈ orb(x, S∗).
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Example 4.22 Let us return to the smallest non-abelian (metacyclic) group, 
S3 = G(3, 2, 2). Since (k1,m) = (1, 3) = 1, we know that S3 has trivial centre. We cal-
culate the sets R∗ and L∗ as the multiplicative closures, modulo 3, of

and

(Note that L = −R. ) Thus R∗ = {0, 1} and L∗ = {0, 1, 2}. We must next verify that 
each orbit is basic. By Corollary 4.21, we need only check those x ∈ N(S∗ − S). 
Since R∗ = R, this case requires no checking. For L∗, we need only check to see if 
orb(1, L∗) intersects L. This is true since

and

Thus Corollary 4.18 applies and we conclude that ||P(S3)|| = |R∗|m = 2 ⋅ 3 = 6 and 
||Λ(S3)|| = |L∗|m = 3 ⋅ 3 = 9, as previously stated. This is a kind of “solution” to the 
mystery of how these orders can be different in the face of so much symmetry. In 
fact we can identify the exact mappings contained in both P(G) and Λ(G) using con-
tainers. Theorem 4.17 implies that

and

Example 4.23 Since the construction of ΣG(S) may be of independent interest, we 
will select a small m for G,   with trivial centre, and choose a base S which will 
generate in “interesting” example of ΣG(S) . Let G = G(5, 4, 3) and let S = {0, 4}. 
Since (k − 1,m) = (2, 5) = 1, it follows that G has trivial centre. S is a base since 
0 ∈ N(S) and 4 ∈ I(S). We compute that S∗ = {0, 1, 4}. To see that each orbit is 
basic, we need only check x ∈ S∗ − S = {1}. Since orb(1, S∗) = {1, 4}, we have 
orb(1, S∗) ∩ S = {4} ≠ ∅. It follows that Theorem 4.17 and Corollary 4.18 hold in 
this case. Thus we see that ΣG(S) is a union of the maximal containers Con(x, 1) 
for x ∈ S∗. It follows from our theorems, since |Con(x, 1)| = 5 and |S∗| = 3, that 
||ΣG(S)

|| = 15. In this case we may also compute that R∗ = L∗ = {0, 1, 2, 3, 4} and 
|P(G)| = |Λ(G)| = 25; thus it is clear that ΣG(S) is a semigroup distinct from the 
commutation semigroups.

R = {kj − 1 ∶ j ∈ ℤ2} = {20 − 1, 21 − 1} = {0, 1}

L = {1 − kj ∶ j ∈ ℤ2} = {1 − 20, 1 − 21} = {0, 2}

orb(1, L∗) = {1 ⋅ y ∶ y ∈ (L∗)} = {1, 2}

orb(1, L∗) ∩ L = {2} ≠ ∅.

P(S3) =Con(0, 1) ∪ Con(1, 1)

={�(0, 0),�(0, 1),�(0, 2),�(1, 0),�(1, 1),�(1, 2)}

Λ(S3) = Con(0, 1) ∪ Con(1, 1) ∪ Con(2, 1)

= {�(0, 0),�(0, 1),�(0, 2),�(1, 0),�(1, 1),�(1, 2),�(2, 0),�(2, 1),�(2, 2)}.



1 3

Commutation semigroups of finite metacyclic groups with trivial…

5  Non‑basic orbits

In the previous section we have seen that, given G(m, n, k) and a base S, if each 
orbit is basic, ΣG(S) is complete. Theorem 4.12 then gives us a description of the 
mu-maps in ΣG(S) in terms of containers as well as an easily calculated formula for 
its order. The other case to consider is the occurrence of non-basic orbits in S∗. Here 
we have a more complex situation for which a uniform description of the mu-maps 
in ΣG(S) is more difficult to obtain. Thus we will provide a procedure which lists 
the x’s with non-basic orbits. In each case we will then apply Lemma 4.7 to gener-
ate FG(x, S). Having done this for each non-basic x,  we can then find exactly those 
containers which constitute ΣG(S). When orb(x, S∗) is non-basic, we may need to 
include more than one x-container in the union. Some x-families have one container 
which is a superset of all other members of the family, and this can be used as the 
only x-container in the union. However, some x-families require the union of several 
containers. These containers will not be disjoint; thus, to determine the order of the 
x-family portion of the union forming ΣG(S), we may have to use the principle of 
inclusion and exclusion. We will then work through an example to illustrate the pro-
cedure in action.

Procedure We assume we are given G = G(m, n, k), a metacyclic group with triv-
ial centre, and a base S ⊆ ℤm. We generate S∗ by closing S under multiplication and 
then write S∗ = I(S∗)

⋃̇
N(S∗).

Next, we calculate the orbits, for each x ∈ S∗, by forming the sets 
orb(x, S∗) = {xy ∶ y ∈ I(S∗)}.

By Corollary 4.21, we need only check the orbits for x ∈ N(S∗) − N(S) to see if 
orb(x, S∗) ∩ S = ∅. If each orbit intersects S,  then Theorem 4.17 tells us that ΣG(S) 
is complete, how to write it as a union of containers, and its order.

When an orbit does not intersect S,   we add orb(x, S∗) to the list of non-basic 
orbits. Assuming there are non-basic orbits, write S∗ = B ∪ N, with 
B = {x ∈ S∗ ∶ orb(x, S∗) is basic} and N = {x ∈ S∗ ∶ orb(x, S∗) is not basic}. By 
Theorem 4.16, we can write the portion of ΣG(S) covered by families of containers 
associated with basic orbits, as with size m|B|. The remaining portion of ΣG(S) is ⋃̇

x∈N
∪ F(x, S). We know that, for each x ∈ N, ∪F(x, S) =

⋃
y∈Y(x)

Con(x, y). The first 

step in determining these unions is to calculate the set Y(x) for a particular x ∈ N. 
Since N ∩ S = ∅, we know that �(x, y) ∈ Π�(S). Therefore, there exist s ∈ S and 
s∗ ∈ S∗ such that x = ss∗ and y = s∗z. We find all such pairs (s∗, z) and write the list 
of containers Con(x, s∗z) that the pairs yield. This set is the x-family. The union of 
these containers is the portion of ΣG(S) contributed to the union by ∪F(x, S). Look-
ing at a list of such containers, we need to determine the containment relationships 
among them. We can make use of Lemma 3.11 and the principle of inclusion and 
exclusion to calculate the size of this union.

At this point an example will be useful.

Example 5.1 Taking G = G(63, 6, 2), we see that since k − 1 = 1, it is coprime to 63 
and, therefore, G has trivial centre. We will construct P(G) and determine its order. 
Here a calculation gives
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and, closing this under multiplication, we have

where the invertible elements in R and R∗ have been underlined. The values of x for 
which we wish to check the orbits are in

Note that 31 generates the group of invertibles I(R∗); therefore we can multiply 
repeatedly by 31 to produce each orbit. When we do this, we find three non-basic 
orbits: orbR(9), orbR(21), and orbR(42). So for each value of x ∈ R∗ − {9, 21, 42}, the 
x-family is complete and its contribution to P(G) is Con(x, 1). Each of these maximal 
containers has order 63.

Next consider the 9-family. Here we wish to find all solutions of the congruence 
uv = 9 (mod63) for u ∈ R and v ∈ N(R∗). The modular arithmetic here may be sim-
plified by noting that if we write uv as 9u′v′, we can reduce 9u�v� = 9 (mod9 ⋅ 7) to 
u�v� = 1 (mod7), yielding

using multisets, since we can ignore order temporarily, for these pairs. Thus, depend-
ing on how the two factors of 3 are distributed between u and v, 

Since u ∈ R, we can remove any doubleton with no coordinate in R. This leaves us 
with

Checking that v ∈ N(R∗), we see that all four doubletons are solutions. Thus we have

hence,

By Lemmas 3.11 and 3.12, we have Con(9, 45) = Con(9, 9) ⊆ Con(9, 3) and there-
fore, ∪FG(9,R) = Con(9, 3) and ||∪FG(9,R)

|| = |Con(9, 3)| = 21.

To find ∪FG(21,R), we solve the congruence uv = 21 (mod63) (u ∈ R, v ∈ N(R∗)) 
by removing 21 to obtain u�v� = 1 (mod3). The two solutions, (1,  1) and (2,  2),   
yield the doubletons {{1, 21}, {3, 7}, {2, 42}, {6, 14}}. Checking the domains, 
we obtain the solutions of the original congruence, {(1, 21), (3, 7), (7, 3)}. Thus 
FG(21,R) = {Con(21, 21), Con(21, 7), Con(21, 3)}. Note, by Lemma 3.12, that 
Con(21, 21) ⊆ Con(21, 3) and Con(21, 21) ⊆ Con(21, 7), but Con(21, 3) and 

R =
{
0, 1, 3, 7, 15, 31

}

R
∗ = {0, 1, 3, 4, 6, 7, 9, 12, 15, 16, 18, 21, 24, 27, 28, 30,

31, 33, 36, 39, 42, 45, 48, 49, 51, 54, 55, 57, 60, 61},

N(R∗) − N(R) = {6, 9, 12, 18, 21, 24, 27, 28, 30, 33, 36, 39, 42, 45, 48, 49, 51, 54, 57, 60}.

{
u�, v�

}
∈ {{1, 1}{2, 4}, {3, 5}, {6, 6}},

{u, v} ∈ {{1, 9}, {3, 3}, {18, 4}, {6, 12}, {2, 36}, {27, 5}, {9, 15}, {3, 45}, {54, 6}, {18, 18}}.

{{1, 9}, {3, 3}, {9, 15}, {3, 45}}.

(u, v) ∈ {(1, 9), (3, 3), (3, 45), (15, 9)};

FG(9,R) = {Con(9, 9), Con(9, 3), Con(9, 45)}.
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Con(21, 7) are incomparable. Also Con(21, 21) = Con(21, 3) ∩ Con(21, 7); there-
fore, by the law of inclusion and exclusion,

Similarly, we find that ∪FG(42,R) = Con(42, 3) with ||∪FG(42,R)
|| = 21. In sum-

mary, there are 27 elements of R∗ with basic orbits, therefore that portion of P(G) is �
⋃

orb(x,R∗) basic

Con(x, 1)

�
 having order 27 ⋅ 63 = 1701. The remainder of P(G) con-

sists of the unions of the three families calculated. Thus

with |P(G)| = 1701 + 21 + 27 + 21 = 1770.

6  Application of the general theory to the commutation semigroups

In this section we will apply the general results obtained in Sect. 4 to the com-
mutation semigroups P(G) and Λ(G) for G = G(m, n, k) a metacyclic group with 
trivial centre. Specifically we will investigate situations in which m and n are of, 
number theoretically, simple form. As mentioned earlier, m = 63 is the first value 
for which non-basic orbits exist. Note that 63(= 32 ⋅ 7) is of the form p2q. We will 
show, in this section, that if m is of the form p or p2 or if n is prime, then there 
are no non-basic orbits and the commutation semigroups are complete. Since this 
can fail when m = p2q, it would be interesting to study the situation for m = pq 
and p3.

Theorem 6.1 If G = G(p, n, k) with p prime and S is a base, then ΣG(S) is complete.

Proof Since p is prime, all non-zero elements of ℤp are invertible. Thus N(S∗) = {0}. 
Since 0 ∈ S, we have N(S∗) − N(S) = ∅, and thus, by Corollary 4.21, it follows that 
orb(x,R) is basic for each x ∈ S∗. The result follows by Theorem 4.17.   ◻

Theorem 6.1 with Lemma 4.4 imply the following.

Corollary 6.2 If G = G(p, n, k) with p prime, then  P(G) and Λ(G) are complete.  
 ◻

||FG(21,R)
|| = |Con(21, 3)| + |Con(21, 7)| − |Con(21, 21)| = 21 + 9 − 3 = 27.

P(G) =

(
⋃

orb(x,R∗) basic

Con(x, 1)

)
∪
(
∪FG(9,R)

)
∪
(
∪FG(21,R)

)
∪
(
∪FG(42,R)

)

=

(
⋃

orb(x,R∗) basic

Con(x, 1)

)
∪ Con(9, 3) ∪ ((Con(21, 3) ∪ Con(21, 7))

− Con(21, 21)) ∪ Con(42, 3)
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Theorem 6.3 If G = G(p2, n, k) with p prime, thenP(G) and Λ(G) are complete.

Proof We will prove the result for P(G) and comment that the proof for Λ(G) is 
similar. Given m = p2, for some prime p,   we claim that either N(R) = {0} or 
N(R) = {0, p, 2p,… , (p − 1)p}. Assuming this has been shown, Corollary 4.21 
says it is enough to check that the elements of N(R∗) − N(R) generate basic orbits. 
If N(R) = {0}, it is clear that the only non-invertible in the closure of R would be 
0 itself. In this case, N(R∗ − R) = ∅, and Corollary 4.21 implies that all orbits are 
basic. Hence, by Theorem 4.17, P(G) is complete. If N(R) = {0, p, 2p,… , (p − 1)p}, 
this is the complete set of non-invertibles in ℤp2 and therefore no new non-inverti-
bles could be generated in R∗ when forming their products. Again, Corollary 4.21 
assures us that all orbits are basic and Theorem 4.17 yields our conclusion.

It remains to prove the following:

Claim Either N(R) = {0} or N(R) = {0, p, 2p,… , (p − 1)p}.

Proof of  Claim We will suppose that N(R) ≠ {0} and show that 
N(R) = {0, p, 2p,… , (p − 1)p}. Note that each of the elements of the form 
ap (0 ≤ a ≤ p − 1) has a common factor of p with m(= p2) and, hence, is non-invert-
ible in ℤp2 . We are assuming there is a non-zero, non-invertible in R,  thus there exists 
an a (0 < a ≤ p − 1) and a t (1 ≤ t ≤ n − 1) so that kt − 1 = ap (mod p2). Note that 
a is invertible modulo p;   thus there is an s (1 ≤ s ≤ p − 1) so that as = 1(modp). 
Thus there is u (1 ≤ u ≤ p − 1) for which sa = 1 + up. If a,  s,  and u are interpreted 
as integers modulo p2, we have sa = 1 + up (mod p2). Since kt − 1 = ap (mod p2), 
we have kt = ap + 1 (mod p2), and thus, kst = (ap + 1)s (mod p2). By the binomial 
theorem,

Reducing these terms modulo p2, we obtain

Therefore, kst − 1 = p, and it follows that p ∈ R. If b ∈ ℤp2 ∩ {1, 2,… , p − 1}, we 
note that kbst = (p + 1)b (mod p2). Again, by the binomial theorem we have

and, hence, bp ∈ N(R). This establishes our claim.   ◻

Next we introduce a technical lemma. Recall that kt = kt − 1, that k and k1 are 
both coprime to m,  that n = indm(k) and, hence, that kn = 0 (mod m).

kst = (ap + 1)s (mod p2) =

(
s

0

)
asps +

(
s

1

)
as−1ps−1 +⋯

+

(
s

s − 1

)
ap + 1 (mod p2).

kst = sap + 1 (mod p2) = (1 + up)p + 1 (mod p2) = p + 1 (mod p2).

kbst = (p + 1)b (mod p2) = bp + 1 (mod p2)
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Lemma 6.4 Let G = G(m, n, k) and let p be a prime which divides m . Let 
s (1 < s ≤ n) be minimal so that p divides ks. Then, for each t (1 < t ≤ n), p divides 
kt if and only if s divides t.

Proof We will first justify the existence of the number s in the statement of the 
Lemma. Note that since kn = 0 (mod m), we know that p divides kn. Thus there is a 
minimal s (s ≤ n) for which p divides ks. Since (m, k1) = 1, p does not divide k1 and, 
therefore, 1 < s ≤ n.

(⇒) Since ks = k1(1 + k +⋯ + ks−1) and kt = k1(1 + k +⋯ + kt−1), and since p 
does not divide k1, it divides both (1 + k +⋯ + ks−1) and (1 + k +⋯ + kt−1). Let q 
and r be the non-negative integers so that t = qs + r with 0 ≤ r < s . If r = 0, then s 
divides t and we are done. Suppose then that r > 0 . Then

Since p divides (1 + k +⋯ + ks−1) and (1 + k +⋯ + kt−1), it follows that p must also 
divide kqs(1 + k +⋯ + kr−1). By Lemma 2.1, p does not divide k;  therefore it must 
divide (1 + k +⋯ + kr−1) and, hence, p divides kr = (k − 1)(1 + k +⋯ + kr−1). But 
since r < s, this contradicts the minimality of s. Thus r = 0, and our result follows.

(⇐) Now suppose that s divides t (1 < t ≤ n) with t = qs for some positive integer 
q. From a calculation similar to the one above, we derive

We next multiply both sides by k1:

Therefore, kt = (1 + ks + k2s +⋯ + k(q−1)s)ks, and since p divides ks, it follows that p 
divides ki.   ◻

Theorem 6.5 If G = G(m, p, k) with p prime, then R∗ − {0}, L∗ − {0} ⊆ I(ℤm) and 
both P(G) and Λ(G) are complete.

Proof Suppose p is a prime which divides m. Since kn = 0 (mod m), we know that 
kn must have p as a divisor. Select s minimal so that p divides ks. We know that 

(1 + k +⋯ + kt−1) = (1 + k +⋯ + ks−1) + (ks + ks+1 +⋯

+ k2s−1) + (k2s + k2s+1 +⋯ + k3s−1) +⋯

+ (k(q−1)s + k(q−1)s+1 +⋯ + kqs−1) + (kqs + kqs+1

+⋯ + kqs+r−1)

= (1 + k +⋯ + ks−1) + ks(1 + k +⋯ + ks−1) +⋯

+ k(q−1)s(1 + k +⋯ + ks−1) + kqs(1 + k +⋯ + kr−1)

= (1 + ks + k2s +⋯ + k(q−1)s)(1 + k +⋯ + ks−1)

+ kqs(1 + k +⋯ + kr−1).

(1 + k +⋯ + kt−1) = (1 + k +⋯ + kqs−1)

= (1 + ks + k2s +⋯ + k(q−1)s)(1 + k +⋯ + ks−1).

k1(1 + k +⋯ + kt−1) = (1 + ks + k2s +⋯ + k(q−1)s)k1(1 + k +⋯ + ks−1).
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k1 = k − 1 is coprime to m,  thus p does not divide k1. So 1 < s ≤ n. By Lemma 6.4, 
it follows that s divides n,  but, since n is prime, we have s = n. It follows that p is 
not a divisor of any ki with i < n. This argument applies to each prime dividing m;  
therefore we can conclude that no prime divisor of m divides ki with i < n. Thus all 
such ki are coprime to m and, hence they, and their products, are invertible in ℤm. 
By Lemma 2.4(i), 0 ∈ R, thus 0 is the only non-invertible in R∗, and it follows that 
N(R∗) − N(R) = ∅. Then, by Corollary 4.21, all orbits are basic and our result for 
P(G) follows from Theorem 4.17. Note that if x is invertible in ℤm with inverse x−1 , 
then (−x)(−x−1) = xx−1 = 1. Thus all non-zero elements of L∗ are also invertible. So 
both the left are right commutation semigroups are complete.   ◻

Theorem 6.6 Any non-abelian pq-group is a metacyclic group with trivial centre 
and its commutation semigroups are complete.

Proof We assume, without loss of generality, that p > q. It is easily seen that a non-
abelian group of order pq has presentation G(p, q, k). Since p is prime, (p, k − 1) = 1; 
thus G has trivial centre. Since m = p is prime, Theorem 6.1 gives our result.   ◻

This result applies to the pq-groups studied by Countryman in [1]. Thus each of 
the commutation semigroups of a non-abelian pq-group is simply a disjoint union of 
maximal containers. Each maximal container is of order p and the order of the two 
commutation semigroups are determined by the sizes of the multiplicative closures 
of R and L in ℤp. For example, in the pq-group G(7,  2,  6) we have R = {0, 5}, 
R∗ = {0, 1, 2, 3, 4, 5, 6}, L = {0, 2}, and L∗ = {0, 1, 2, 4,}. Thus, by Corollary 4.18, 
we have P(G) =

⋃
x∈R∗

Con(x, 1) and Λ(G) =
⋃
x∈L∗

Con(x, 1) with |P(G)| = |R∗|7 = 49, 

and |Λ(G)| = |L∗|7 = 28.

In [1, Theorem 2.1] Countryman proves: If G is a non-abelian pq-group (p,   q 
primes), then P(G) = Λ(G) if and only if |P(G)| = |Λ(G)| . He also notes that these 
two conditions are equivalent to P(G) ≅ Λ(G). Having developed the theory to this 
point, we are now able to extend his result.

Theorem 6.7 If G = G(p, n, k) with p a prime, then the following are equivalent: 

 (i) P(G) = Λ(G),

 (ii) P(G) ≅ Λ(G),

 (iii) |P(G)| = |Λ(G)|,
 (iv) |R∗| = |L∗|.

Proof First note that, by Theorem  6.5, all non-zero elements of R∗ and L∗ are 
invertible.

(i) ⇒ (ii) and (ii) ⇒ (iii) are clear.
(iii) ⇒ (iv) : By Corollary 6.2, we know that P(G) and Λ(G) are complete. Thus, 
Corollary 4.18(i) and (ii) imply that |P(G)| = |R∗|p and |Λ(G)| = |L∗|p. By 
hypothesis (iii), this yields |R∗| = |L∗|.
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(iv) ⇒ (i) : Note that R∗ − {0} and L∗ − {0} are subgroups of ℤp − {0} of the same 
order. Since ℤp − {0} is the multiplicative group of a finite field, it is cyclic, and 
since both R∗ − {0} and L∗ − {0} are subgroups of a cyclic group, they are cyclic. 
Since cyclic groups have only one subgroup of each possible order, we conclude 
that R∗ − {0} = L∗ − {0}. Thus R∗ = L∗. By Corollary 4.18(i) and (ii) we have 
P(G) =

⋃̇
x∈R∗

Con(x, 1) and Λ(G) =
⋃̇

x∈L∗
Con(x, 1); therefore, P(G) = Λ(G).

   ◻
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